Вестибулярные ядра

Материал из BrainstormWiki
Перейти к: навигация, поиск

Комплекс вестибулярных ядер оказался гораздо сложнее, чем "обычное ядро черепного нерва".

  • Это не единственное назначение вестибулярных афферентов: мозжечок тоже их получает.
  • Большая часть нейронов вестибулярных ядер наоборот, таковых афферентов не получают, зато получают проприоцептивную и зрительную информацию
  • Самый крупный вход в комплекс - вообще из мозжечка (Vidal, Sans)
  • Классические границы ядер очень спорны

Анатомия ядер вестибулярного комплекса

Neal Barcmack. Vestibular Nuclei and Their Cerebellar Connections. 2015. См. расшифровку в тексте

Классически гистологи выделяют четыре ядра, на основе морфологии клеток - но надо помнить (я на это ссылаюсь много где по ходу этих заметок), что никаких четких границ между этими ядрами нету, есть "территориальные" споры между разными авторами относительно их границ, и устоявшееся деление ядер вероятно имеет мало отношения к их функции.

  • SVN - Superior Vestibular Nucleus, или же Bechterew’s nucleus (сам он называл его angular nucleus). Единственное ядро, отличающееся относительно однородным распределением нейронов среднего размера.
  • LVN - Lateral Vestibular Nucleus, так же Deiter’s nucleus - характерное своими огромными клетками, которые однако концентрируются в дорсо-каудальной части, что порождает споры относительно границ этого ядра.В ростро-вентральной части нейроны более стандартного размера, и границы с SVN в ростро-дорсальном отделе трудно различимы. Границы с DVN тоже спорны, и DVN также содержит гигантские клетки. Некоторые источники называют LVN лишь то, что содержит огромные клетки. Путаница именно с этим ядром огромна: большинство источников следуют Brodal и Pompeiano, одновременно считая, что они захватили кусок магноцеллюлярного MVN.
  • DVN - Descending Vestibular Nucleus, или же IVN - Inferior VN, или даже spinal vestibular nucleus. Cуществует "территориальный спор" в источниках между DVN и LVN. Спинальным его называли во времена, когда считалось, что вестибулярный нерв имеет спинальное ответвление, и это ядро служит его корешком.
  • MVN - Medial Vesibular Nucleus, или же Schwalbe’s nucleus. Раньше называли еще и треугольным - nucleus triangularis, и даже principal vestibular nucleus. Наверное, самое большое из вестибулярных ядер. Существует "территориальный спор" в источниках между MVN и LVN. В этом ядре (оно наибольшее по размеру) есть нейроны самых разных размеров. Источники также разнятся о градиенте их размеров - кто-то пишет про дорсальный кластер маленьких (парвоцеллюлярных) клеток и вентральный кластер более крупных (магноцеллюлярных) нейронов, кто-то говррит, что градиент на самом деле каудально-ростральный. В ростральной части MVN содержатся VOR нейроны (предположительно как раз магноцеллюлярные), в каудальной - регуляторы автономных функций, парвоцеллюллярные. Brodal выделил в нем еще кластер "m" особо крупных клеток, но функцию не установил вообще.


На картинке изображены ядра в трех разрезах (C - просто увеличенное B)

Другие ядра, имеющие явное отношение к вестибулярной системе

  • Psol - parasolitary nucleus - также получает вестибулярные проекции, и многие считают его "пятым" ядром. В основном направляет исходящие связи в Inferior Olive
  • Комплексы X, Y и Z. Они не получают прямой вестибулярной проекции, но очевидно являются интеграторами проприоцептивной информации. Особенно здесь характерен комплекс Х, который уверенно выделяется в работах по соматосенсорно-вестибулярной интеграции, и комплекс Y, который служит источником вестибуло-таламо-кортикальных путей
  • NPH - nucleus prepositus hypoglossi,имеющее функционально схожие связи с вестибуломозжечком и схожие проекции - и хотя туда тоже попадают некоторое количество прямых входов вестибулярного нерва, основной вход оно получает от “настоящих” вестибулярных ядер (Büttner-Ennever). Считается источником восходящей в кору информации в первую очередь для head direction cells
  • NRGc nucleus reticularis gigantocellularis - это ядро ретикулярной формации, и хотя оно особенно важно для вестибулярной/позной функции, практически вся окружающая вестибулярные ядра ретикулярная формация так или иначе связана с ней, и является источником ретикулоспинального тракта

Остальные обозначения Ecu external cuneate nucleus, Flflocculus, icp inferior cerebellar peduncle, IO inferior olive, Nsol solitary nucleus, Py pyramidal tract, SO superior olive; SpV spinal trigeminal nucleus, 7 facial nucleus

Морфология на примере Lateral Vestibular Nucleus

Deiters nucleus.png

Роскошный, бомбический рисунок из работы самого же Отто Дейтерса, именем которого - ядро Дейтерса - названо Lateral Vestibular Nucleus. Публикация 1865(!) года, отрисовано видимо раньше, так как умер Дейтерс от тифа в 1863 году, в возрасте 29 лет всего. Только вдумайтесь — это нарисовано до Cajal и Golgi и споров о том, что такое нейрон. Совершенно потрясающая работа. Дейтерс использовал свою собственную технику окрашивания ( до реакции Golgi еще 10 с лишним лет). Сокращения (добавлены позднее при ре-публикации): dV нисходящий корешок тройничного нерва, py пирамиды, rest.b. restiform body - оно же нижняя ножка мозжечка , vest.n. вестибулярный нерв (на самом деле Дейтерс, как было принято в его время, называл его "акустический нерв"). В центре ствола хороша видна "ретикулярная формация". Хотя сам Дейтерс не был сторонником ретикулярной теории нервной системы, вот эти его рисунки активно использовались ее сторонниками.

Эту картинку я привожу (помимо того, что это ярчайший кусок истории, который не стоит забывать) как иллюстрацию морфологических признаков, по которым выделяли ядра гистологи. Вот эти огромные черные нейроны — гигантские клетки Дейтерса — считаются характерным признаком LVN. Хотя это не единственный класс нейронов в нем, конечно. Выделяют также средне размерные и мелкие нейроны, которые, однако, морфологически довольно похожи на гигантские.

Тем не менее, наличие нейронов столь разных размеров намекает на несколько (нисходящих?) систем в рамках этого ядра. Это приводит к разногласиям со времен Дейтерса по сей день. Дейтерс, например, отрицал наличие связи из вестибулярного нерва в ядро своего имени. Последующие исследоватили ее, наоборот, находили. Еще более тщательные последующие исследователи отмечали, что связи есть, но они избегают именно гигантских Дейтеросовых клеток, так что прав выходит и Дейтерс, и все остальные. Пойди разберись.

Входы в вестибулярные ядра

Проекции вестибулярного нерва по Barmack 2003. На правом рисунке проекции полукружных каналов в вестибулярные ядра. Заметьте как они "обходят" lateral vestibular nucleus

Аксоны первичных вестибулярных нейронов Scarpa's ganglion раздваиваются на входе в ствол, и меньшая часть идет в мозжечок, большая часть в вестибулярные ядра. Границы вестибулярных ядер, определенные гистологами, при этом "не уважаются", топография проекций афферентов почти не пересекается с границами вестибулярных ядер. Практически единственное, причем негативное топографическое исключение - проекции от горизонтального канала есть во все ядра, кроме Lateral Vestibular Nucleus.

Волосковые клетки и их соответствующие нейроны в Scarpa's ganglion разделяют на два класса - regular и irregular. Несмотря на то, что это разделение активно исследуется, функциональная роль их до сих пор неясна, и поэтому здесь на них я подробно останавливаться не буду (подробнее см. Cullen 2012)

Входы в нейроны вестибулярных ядер с точки зрения фармакологов Soto et al: Neuropharmacological basis of vestibular system disorder treatment 2013

Для правильной интерпретации первичных сигналов требуется комбинация, например, сигналов от отолитов и полукружных каналов (по отдельности она противоречива). В силу этого проверяли гипотезу о наличии вестибулярных нейронов второго порядка (в ядрах) которые получают одновременно моносинаптический вход от каналов и отолитов, или от разных каналов. - Vestibular convergence. Такие нейроны есть, но редки. Однако многие нейроны вестибулярных ядер (если не большинство) получают непрямую сходящуюся информацию полисинаптическими путями. (McCrea et al 2006)

Вестибулярные афференты лишь один из входящих сигналов вестибулярные ядра. Большинство нейронов вестибулярных ядер получает так же: ( Barmack 2005 )

  • Зрительные входы - см. Дополнительная Зрительная Система
  • Из спинного мозга разными путями, см. Соматосенсорно-вестибулярная_интеграция
  • Входы из мозжечка (в основном, но отнюдь не только, вестибуломозжечка). Вестибуломозжечок работает с вестибулярными ядрами напрямую, остальные отделы - через глубокие ядра мозжечка. Этот аспект иногда выражается в утверждении, что "вестибулярные ядра являются глубоким ядром вестибуломозжечка"
  • Из моторной коры - считается, что эти связи особенно сильны на вестибулоспинальные нейроны

Помимо этих входов отдельно следует отметить Вестибулярный corollary discharge

Выходы из вестибулярных ядер см. отдельные статьи Вестибулоспинальные тракты Вестибулярная кора

Классификация нейронов вестибулярных ядер

рис 1.5 из Büttner-Ennever

Нейроны вестибулярных ядер можно разделить на проекционные (посылающие аксоны за пределы системы), комиссуральные (посылающие аксоны в вестибулярные ядра с другой стороны, не обязательно одноименные), и непроекционные. Проекционные нейроны могут одновременно быть нейронами второго порядка, т.е. получать прямой вход от нейронов первого порядка из Scarpa's ganglion, и в таком случае они образуют любимую всеми учебниками трехнейронную цепь, например VOR. Однако есть и проекционные нейроны, не получающие вестибулярных входов. (на рис 1.5 показаны проекционные нейроны окуломоторных ядер, заштрихованные области - нейроны без прямых вестибулярных входов. Точки и треугольники - проекционные нейроны второго порядка, имеющие вертикальную чувствительность, кружочки - горизонтальную (предположительно от соотвествующих полукружных каналов)). Снова отмечу, что в этой карте очень плохо просматривается аналог соматотопии, и уж точно все плохо с соблюдением границ вестибулярных ядер.

Проекционные нейроны второго порядка имеют следующую распространенную классификацию, полученную в основном на основе исследований вестибулоокулярного рефлекса (cм. статьи Cullen), и поэтому имеет сильный перекос туда, но в силу активного использования в литературе ее необходимо описать.

  • PVP - Position-vesibular-pause нейроны. Они так называются, поскольку их активность останавливается на время саккад глаз. Это основные VOR нейроны, таких большинство
  • EH - Eye-head нейроны, также FTN - floccular target neurons, это тоже VOR нейроны, характерные входом от мозжечка (flocculus) и предположительно обеспечивающие адаптацию VOR
  • VO - Vesibular only - не участвуют в окуломоторных цепях, предположительно строят вестибулоспинальные рефлексы и проекции в кору, в том числе для оценки собственного движения. Имеют взаимные связи с nodulus/uvula мозжечка. В современной литературе название "Vestibular only" признается неудачным, и их называют Non-Eye-Movement нейроны - NEM. (McCrea)

На сегодняшний день нет данных о том, насколько эта классификация полна за пределами окуломоторных исследований. В частности, достоверно известно, что существуют нейроны вестибулярных ядер, которые одновременно проецируют и окуломоторные ядра и спинной мозг - их аксон раздваивается и идет и вверх и вниз - рис 1.7 из Büttner-Ennever, 1.3.2.3.

В этой связи непонятно как относиться к утверждениям Cullen об отсутствии оптокинетических входов для VO нейронов - пока не построено полной карты нейронов вестибулярных ядер, сделать такие выводы практически нереально (оптокинетические эффекты на обе предполагаемые функции VO нейронов явно демонстрируются).

Описанная классификация - не единственная. Например, группа Uchino (подробнее смотри Вестибулоспинальные тракты) предлагает классификацию - VO - вестибуло-окуломоторные, VC - вестибулошейные, VOC - одновременно шейные и окуломоторные, VS - вестибулоспинальные.

Заметьте, что VO здесь и в предыдущей схеме означает прямо противоположные вещи, так что за классификаторами нужен глаз да глаз.

Комиссуральные пути

из работ Goldberg, цветом выделены зоны проекционных нейронов, черные стрелки - комиссуральные пути, пустые - внутриядерные (intrinsic)

Корректная интерпретация вестибулярных сигналов невозможна без сопоставления данных левого и правого лабиринта. Такое сопоставление обеспечивают пересекающие среднюю линию комиссуральные (comissural) пути. Классическая картина системы таких связей представлена на рисунке справа.

Несколько наблюдений, обычно приводимых в литературе относительно этой системы:

  • Комиссуральные связи надежно увязывают NPH с вестибулярными ядрами - хотя NPH и не получает прямых входов от вестибулярного нерва, оно активно проецирует в противоположные вестибулярные ядра
  • LVN не посылает комиссуральных связей.
    • На самом деле, это утверждение можно осторожно расширить - на рисунке справа цветом выделены зоны расположения проекционных нейронов вестибулярных ядер, которые являются источником окуломоторных и спинальных проекций (см. схему выше тоже). Комиссуральных проекций они при этом не делают
    • В очередной раз отмечу, что спинальная проекционная зона уверенно лежит на пересечении классических границ ядер
  • Эта система может дать еще одну классификацию нейронов вестибулярных ядер (эти множества пересекаются)
    • вторичные нейроны, получающие прямые проекции из вестибулярного нерва (первичные все в Scarpa's ganglion по устоявшейся номенклатуре)
    • проекционные нейроны, посылающие аксоны в окуломоторные или спинальные моторные или автономные центры (часть из них являются вторичными, входящими, особенно верно для SVN-VOR нейронов)
    • комиссуральные нейроны (вот они вероятно не могут быть проекционными)
    • внутренние, intrinsic нейроны, обеспечивающие связи между ядрами комплекса, но не пересекающие среднюю линию. Вероятно, существенная их часть это FTN - floccular target нейроны, см. выше

Функции вестибулярных ядер

McCall&Yates 2011

Классические четыре вестибулярных ядра - присутствуют у всех млекопитающих. У птиц гистологи выделяют шесть ядер, у рептилий могут меньше, однако функциональная роль вестибулярного комплекса распределяется по ядрам не в соответствии с гистологическими границами.

Попытки определить функции каждого ядра в отдельности однако довольно неуспешны, и мне симпатичны другой подход

На рисунке figure 4 из статьи McCall&Yates показана предполагаемая функциональная специализация вестибулярного комплекса у котов, где под Cognition понимается участие в пространственной навигации (вестибулярный вход в гиппокампальные place cells и пр.). Это горизонтальное деление довольно хорошо соответствует делению на эмбриологические зоны - ромбомеры, см. Straka et al 2014, и в такой классификации (hodological mosaic) вестибулярный комплекс довольно консервативен между птицами, млекопитающими и рептилиями и даже амфибиями (данных, впрочем, пока довольно мало)

Картинка функциональных ролей несколько противоречит рис. 1.5. из предыдущей секции, но в этой науке все так.

Автономный контроль, о котором идет здесь речь - это регулирование кровяного давления, которое требует достаточно быстрого реагирования в ответ на изменения положения тела для обеспечения адекватной работы. Этими изменениями тонуса сосудов занимается автономная нервная система, которая получает вход от соответствующих отделов вестибулярных ядер.

Вторая возможная связь с автономной нервной системой - соматическая гравицепция

Важный вывод: функции вестибулярных ядер неконгруэтны их границам. В частности, выделение современными методами LVST нейронов показывает, что он не совпадает с границами LVN никоим образом.

Соматотопия LVN

LVN, Brodal 1974, рис 15. В его схеме шейно и пояснично проецирующие нейроны четко разделены. Соматотопия есть. Современные работы (см. ниже) это не подтверждают
Basaldella, Arber 2015. В верхней части помечены все спинально-проецирующие нейроны, цветом выделены те, что оказались в пределах Lateral Vestibular Nucleus (остальные в DVE, которое авторы называют spinal. В нижней части отмечены лишь те, которые образуют моносинаптические проекции в мотонейроны. Обратите внимание, что в дорсальной части VLE вообще нет моносинаптических проекций в мотонейроны, а в вентральной, хотя "градиент" соматотопии Brodal более-менее сохраняется, все слишком перемешано, чтобы говорить о соматотопии

Brodal выделяет соматотопию в Lateral Vestibular Nucleus, соответствующую соматотопии вестибулоспинального тракта, из него исходящего. На рисунке справа показана схема организации проекции, отмечу, что это взгляд с латеральной стороны, т.е. ядро повернуто на 90 градусов по отношению к другим схемам на этой странице.

Это наблюдение противоречит другим авторам, которые находят проекции из этого ядра лишь в пограничной с другими областями.

Соматотопия LVN довольно спорная история, поскольку более поздние исследования показали, что Вестибулоспинальные тракты активно ветвятся, иннервируя одним нейроном многие сегменты спинного мозга, однако по меньшей мере группировка на шейные и поясничные нейроны соблюдается в общем и целом (Boyle)

Соматотопия LVN спорна еще и по той причине, что предполагает (очень многие авторы следуют этому неявному предположению), что это ядро целиком является источником вестибулоспинального тракта, и зона выхода соответствующих аксонов тракта соответствует роли и самого ядра.

Dorsoventral division lvn.jpg

На рисунке, цинично переделанном Яном Фогтом из Brodal&Pompeiano же, на их рисунки LVN наложено другое деление ядра — на вентральную часть, получающую прямые проекции от вестибулярного нерва, и дорсальную, которая активно управляется мозжечком ("зона B") и содержит гигантские нейроны Дейтерса. Если совместить эти представления — то получается, что зона задних лап (рисунок и схемы про котов) управляется мозжечком, а зона шеи и возможно передних лап - вестибулярным нервом напрямую.

Brodal пишет, что размер гигантских клеток Дейтерса соответствует соматотопии: большие клетки (возможно? это только предположение с его стороны) соответствуют более толстым же волокнам в тракте,идущим в поясничные отделы, и этим объясняется их размер. Эта гипотеза, по всей видимости, ошибочна


  • Организация именно LVN проекций в мотонейроны, в моносинаптической их части (предположительно как раз гигантские клетки) различна для задних и передних конечностей, даже у котов, которые тетраподы (см. Антигравитационный тонус). Но функциональность этой проекции надежно не установлена. Интересны две гипотезы
    • Реакция на падение (часто высказывалась группой Grillner, поскольку обнаруживался высокий порог срабатывания мотонейронов)
    • Свежее свидетельство в статье Basaldello, Arber 2015, где авторы нашли предпочтительную связь моносинаптических проекций в медленные мотонейроны, из чего можно сделать вывод, что вестибулоспинальная иннервация поддерживает антигравитационный тонус
  • Шея действительно управляется вестибулярной системой совершенно иным образом, чем аксиальные мышцы спины и тем более конечности, и там действительно есть функциональные моносинаптические рефлексы
  • Диффузное распределение гигантских клеток намекает, что в рамках LVN может быть минимум две системы, с разными функциями (как в стриатуме например)

Тем не менее, снова повторю замечание о том, что функции вестибулярных ядер и в особенности LVN неконгруэтны их границам. Эта концепция совершенно не была принята в 60-70 года, когда Brodal, Lund и прочие выполнили исследования, на основании которых был сделан вывод о соматотопии в LVN. Метод стимуляции электродом LVN не обладает достаточной разрешающей точностью, так что утверждение о соматотопии в LVN следует считать спорным - но явно пока не опровергнуто более высокоразрешающими исследованиями.

Выводы

Иллюстрация из работы Maria Di Bonito 2015 эмбриологическая природа проекционных нейронов вестибулярных ядер и ретикулоспинальных нейронов

На протяжении целых десятилетий однозначного ответа на вопрос о том, что же является "настоящими" границами вестибулярных ядер в литературе не сформировалось. Эти разночтения с легкостью приводят к разным выводам: У кого то разрушение LVN однозначно приводит к исчезновению децеребрационной ригидности, у кого то (Magoun 1949) не приводит. Кто-то пишет о том, что LVN не получает прямых вестибулярных входов, кто-то - что наоборот. У одних LVN и источник LVST тракта - это тождественно одно и то же, и они ищут в нем соматотопию (Brodal), у кого то LVST оказывается и из DVN выходит, и даже из MVN немного. Однозначно понимать результаты многих работ, которые следуют каким-то границам ядер, как например Uemura&Cohen 1974 становится невозможно, поскольку границы ядра и границы функции не совпадают.

Скорее всего, попытка понять вестибулярную систему как набор морфологически определенных ядер с однородной функцией является тупиковой. Даже попытка деления их на "магно-парвоцеллюлярные" части не дает результата. Вестибулярная система видимо ближе по своей структуре к ретикулярной формации с которой они имеют чрезвычайно много общего. Территорию ядер занимают нейроны разных функций, которые вероятно неплохо перемешаны между собой.

Для понимания функций вестибулярного комплекса необходимо использовать средства с разрешающей способностью на уровне отдельных нейронов: иммуногистохимические, эмбриологические, оптогенетические. Пока их мало, но отдельные работы появляются - см. Straka 2014 или Maria di Bonito 2015. В этих работах, отталкиваясь от ромбомеров - временных подразделений ромбовидного мозга, которые "размечаются" при эмбриональном развитии HOX генами - удается обнаружить довольно четкое функциональное деление групп нейронов по их происхождению.

В частности, удалось почти однозначно увязать все нейроны-источники LVST с определенной группой нейронов, происходящих из ромбомера r4 (территория гена Hoxb1, на основании которого их и размечают). В процессе эмбриогенеза у некоторых видов они затем "залезают" на территорию r3 и r5, но в начальных этапах граница четкая! Это позволяет (см. аргументацию в работе Di Bonito) определить LVST группу - источник латерального вестибулоспинального тракта, как единую функциональную группу нейронов.

При этом LVST группа частично "залезает" на территорию соседних ядер - DVN и MVN, а на территории LVN оказываются группы-источники вестибуло-окулярных проекций и MVST проекций.

Утверждение "все LVST нейроны происходят из r4" не означает, что r4 только LVST дает - это на самом деле самый древний сегмент вестибулярной организации, именно в r4 входит вестибулярный нерв, и поэтому он дает много других классов нейронов (см. схему), включая эфферентные, например.

Подход с таким маркированием нейронных групп вестибулярной системы дает надежду. Но вопросы оставляют - в подобном "генетическом вырезании" LVST мыши на удивление функциональными выходят, сохраняя все традиционно приписываемые этому тракту функции (они даже вестибулоспинальный рефлекс восстановили в конечном итоге, после периода его почти полного отсутствия), и выводя на передний план довольно нетрадиционные для вестибулярного комплекса, не связанные с балансом и тонусом функции - как, например, утрату устойчивого чередования конечностей при локомоции.

Литература